Artin Approximation

نویسنده

  • GUILLAUME ROND
چکیده

In 1968, M. Artin proved that any formal power series solution of a system of analytic equations may be approximated by convergent power series solutions. Motivated by this result and a similar result of Płoski, he conjectured that this remains true when we replace the ring of convergent power series by a more general ring. This paper presents the state of the art on this problem, aimed at non-experts. In particular we put a slant on the Artin Approximation Problem with constraints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artin Approximation via the Model Theory of Cohen-macaulay Rings

We show the existence of a first order theory Cmd,e whose Noetherian models are precisely the local Cohen-Macaulay rings of dimension d and multiplicity e. The completion of a model of Cmd,e is again a model and is moreover Noetherian. If R is an equicharacteristic local Gorenstein ring of dimension d and multiplicity e with algebraically closed residue field and if the Artin Approximation Prop...

متن کامل

Łojasiewicz Inequality over the Ring of Power Series in Two Variables

We prove a Łojasiewicz type inequality for a system of polynomial equations with coefficients in the ring of formal power series in two variables. This result is an effective version of the Strong Artin Approximation Theorem. From this result we deduce a bound of Artin functions of isolated singularities.

متن کامل

The Classical Artin Approximation Theorems

The various Artin approximation theorems assert the existence of power series solutions of a certain quality Q : formal, analytic, algebraic, of systems of equations of the same quality Q, assuming the existence of power series solutions of a weaker quality Q’ < Q : approximated, formal. The results are frequently used in commutative algebra and algebraic geometry. We present a systematic argum...

متن کامل

Isomorphisms between Artin-Schreier towers

We give a method for efficiently computing isomorphisms between towers of Artin-Schreier extensions over a finite field. We find that isomorphisms between towers of degree pn over a fixed field Fq can be computed, composed, and inverted in time essentially linear in pn. The method relies on an approximation process.

متن کامل

An extension of the Wedderburn-Artin Theorem

‎In this paper we give conditions under which a ring is isomorphic to a structural matrix ring over a division ring.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012